Summary of rooftop solar analysis

Location: Munich, Germany

Date of analysis: Dec/2023

Recommendation: Install 29 solar panels (56 m^2), for a net present value of 11,871.40 euros, with a payback of 9.75 years.

Main economic results

Financing	NPV	Payback	IRR	LCOE
	(EUR)	(years)	(%/year)	(EUR/kWh)
Gov. subsidies and 75% bank debt	11,871.4	9.75	12.49	0.0641
Gov. subsidies and 100% supplier's credit	7,671.6	8.37	26.52	0.0778
Gov. subsidies and 100% equity	12,414.9	8.76	10.60	0.0623
No gov. subsidies and 100% equity	406.7	17.7	3.24	0.0797

(All rows are for the same number of panels)

Additional results

A system of 28 panels, together with a battery of 7.7 kWh, requires an initial investment of equity investment of 4,246 euros, but provides an NPV of 16,334.3 euros, with a payback of 11.23 years.

Main inputs and assumptions

Household and Economics									
Electricity Consumption	4,500	kWh/year	Inflation	1.9%	per year				
Electricity price – buy	0.34	EUR/kWh	Bank loan interest rate	5.14%	per year				
Electricity price – sell	0.08	EUR/kWh	Bank loan maturity	5	years				
			Equity cost of capital	3.05%	per year				
PV panels									
Peak power	435	W/panel	System losses	13.5%	of output				
Panel area	1.94	m ² /panel	Degradation with age	0.5%	per year				
Useful life	25	Years	Maintenance costs	10.76	EUR/year				
					per panel				
Total cost of optimal installation size (without subsidies)					EUR				
Total cost of optimal installation size (after subsidies)					EUR				

Government subsidies

Attractive credit terms from KFW (German state-owned development bank)

Fixed feed-in tariff for 20 years by the German state, for example 0.081 EUR/kWh for a nominal output of up to 10kWh and partial utilisation of the electricity for own use

Subsidy towards the investment costs by the City of Munich: 1,500 EUR basic subsidy, further 282 EUR per kWp output of the system and additional 47 EUR per kWp output of the system if the modules installed are glass-glass modules

Some PV panel suppliers

- https://sveasolar.de/de-de
- https://klarsolar.de

Author of this report

Philipp Hauswurz

54597@novasbe.pt

www.linkedin.com/in/philipp-hauswurz-211a1818b